
THE DME Calculator

c©DME March 2010

DME - Danish Micro Engineering A/S
Transformervej 12 · DK-2730 Herlev · Denmark

Tel: +45 44 84 92 11 · Fax: +45 44 84 91 97
http://www.dme-spm.com · e-mail: dme@dme-spm.dk

http://www.dme-spm.com
dme@dme-spm.dk

ii The DME Calculator Manual

Contents

1 Using the DME Calculator 1
1.1 Introduction . 1
1.2 Getting started . 3
1.3 Example programs . 4

1.3.1 Understanding basics . 4
1.3.2 Controlling the program flow . 8
1.3.3 Defining own functions . 10
1.3.4 Text output window . 12
1.3.5 Two dimensional plots . 13
1.3.6 Further functions . 14

2 Creating and Using DME Calculator GUIs 15
2.1 Overview . 15
2.2 Creating GUIs . 16
2.3 Using GUIs . 18

2.3.1 Communication with GUI controls 19

3 Language reference 21
3.1 Syntax . 21
3.2 Operators . 22
3.3 Variables . 23

3.3.1 Global Variables . 24
3.4 Comments . 25
3.5 Functions . 25

3.5.1 Program flow functions . 25
3.5.2 User interface functions . 27

iii

CONTENTS

iv The DME Calculator Manual

Chapter 1

Using the DME Calculator

1.1 Introduction

The DME Calculator is a free, advanced calculator for windows. Basically it can be
used like a normal pocket calculator to perform simple operations like adding numbers
etc. with the advantage that all numbers and operations that have been entered can later be
checked and corrected without entering all following data again. Like a normal pocket cal-
culator, the DME Calculator has a predefined set of mathematical functions like trigono-
metric and exponential functions, etc.

Besides the basic mathematical functions the DME Calculator also supports func-
tions like if(), for(), while(), etc., turning DME Calculator’s mathematical expressions
into a real programming language. And as with other programming languages, the DME
Calculator can calculate with variables which can contain either numbers, arrays of num-
bers or strings. It is also possible to define own functions and use them in the following
expressions.

Besides these language features, the DME Calculator has a text and a graphic output
window allowing the user to display messages or evaluation results and make two dimen-
tional graphic plots. Special functions allow reading and generating numerical data files
as well as communication via the PC’s serial port(s).

Since version 3, the DME Calculator allows to create graphical user interfaces (GUIs)
with buttons, scroll bars and input elements etc. to allow user interaction without having
to change the calculator program. To create the GUIs, the DME Calculator is equipped
with an own user interface editor. The files created with this editor can then be loaded
by an DME Calculator program, which then can react on user events. The GUI files are
simple text files, which, for special purposes can also be created by other programs or
even by DME Calculator programs. This allows dynamical changes of user interfaces,
even while a DME Calculator program is running.

Also since version 3, a function for general nonlinear least square fits fit() has been

1

CHAPTER 1. USING THE DME CALCULATOR

added to provide easy modeling of data. Another added function is the fast fourier trans-
form (FFT).

In summary, the DME Calculator is a powerful calculator, integrating many aspects of
a programming language. The DME Calculator is distributed as freeware and the newest
version can always be obtained from DME - Danish Micro Engineering A/S, http://
www.dme-spm.com or DME Nanotechnologie GmbH, http//www.dme-spm.de.

2 The DME Calculator Manual

http://www.dme-spm.com
http://www.dme-spm.com
http//www.dme-spm.de

CHAPTER 1. USING THE DME CALCULATOR

save file
button

start
button

stop
button

open file
button

create new
panel

remove
current panel

global
panel

1st calculator
panel

(currently open)

editor area

result display

function reference
selector

function reference
info display expression valid

status

button for displaying
error description

move to the previously
viewed function description

copy template of the currently
viewd function to the clipboard

Figure 1.1: The main screen of the DME Calculator.

1.2 Getting started
The DME Calculator comes as a single .exe file. It can be started directly and commonly
no installation procedure is necessary. To open this documentation file from the DME
Calculator’s menu the .pdf-file must reside in the same directory as the .exe file.

Figure 1.1 shows the main screen of the DME Calculator. The program has a built-
in text editor where the user program is entered. During typing, the syntax of the user
program is permanently checked and the validity is indicated in the lower right corner by
a green or a red sign. If the ’expression valid status’ is red, the ’show error’ button can be
used to display a message stating the cause of the invalidity.

Try this by entering the expression 1+2 in the program area. After
typing the ’1’, the status stays green and after entering the plus sign, the
status changes to red. Now pressing the show error button displays the
message ’Expression or identifier expected’, as the plus sign requires
something on the left and on the right side. After entering the ’2’, the
status changes to green again.

i

To load and save programs, use the open and save file buttons or the corresponding file
menu. DME Calculator programs have the extension ’.sma’.

When a program has been entered and the status is green, the start button becomes
enabled and the program can be started by using the start button or pressing the F2 key.
When a program terminates, the return value is displayed in the result line.

If you have tried entering 1+2 as mentioned above, now press the start
button. The result of 3 should be displayed in the status bar. i

The DME Calculator Manual 3

CHAPTER 1. USING THE DME CALCULATOR

To perform simple calculations it is quite often nice to see the intermediate results
at once, like in a normal pocket calculator. For this purpose the large Enter key on the
numerical key pad acts like pressing the normal return key and starting the calculation at
the same time. For example when adding numbers you can press the key sequence

2 <Enter>
+5 <Enter>
+3 <Enter>

(where <Enter> means: press the Enter key on the numerical key pad) and always see the
intermediate results.

One DME Calculator file can contain multiple panels. Each panel has its own editor
window and only the expression in the currently active panel is evaluated when the start
button is pressed. When a new file is created, a ’Global’ and a ’Calculator 1’ panel is
created. The ’Global’ panel differs from all other panels: The global panel can not be
evaluated directly, but the expression in the global panel is always evaluated before any
other panel. The global panel can be used to define global variables or functions that
should be available in all other panels.

By using multiple panels one can easily switch between different calculations or start
a different calculation without destroying an old calculation. A new panel is created
by pressing the ’create new panel’ button. Per default, the normal panels are named
’Calculator 1’, ’Calculator 2’ etc. A special name can be choosen by using the rename
function from the panel menu. All panels are stored within one single file together with
the global panel.

Below the result window a short description of all built-in functions can be displayed.
hen pressing the ’function reference selector’ a list of all predefined functions appears and
the desired function can be selected. By using the ’Back’ button one can go through all
the previously viewed function descriptions.

1.3 Example programs

In this sections some program examples are shown, demonstrating the basic principle
of DME Calculator’s language. For advanced reading, go to the language reference in
chapter 3 on page 21.

1.3.1 Understanding basics

The basic operation principle of the DME Calculator language is that of a calculator. As
a first simple example enter the expression shown in Example 1.3.1

4 The DME Calculator Manual

CHAPTER 1. USING THE DME CALCULATOR

(2+5)*sqrt(3)

Example 1.3.1: A first simple example

and press the start button. This calculates (2+5)∗
√

3 which has the result 12.12
You can also enter multiple expressions, separated by a comma (’,’), as shown below:

1+1, 2+2, 3*3

Example 1.3.2: Multiple expressions separated by a comma

When you press start, all expressions are calculated but only the result of the last one
is returned, which is 9 in this case. As the comma is in fact also an operator like the plus
sign, it can appear anywhere in the expression, so

1+(4,6)

Example 1.3.3: The comma is an operator

returns 7, as the result of 4,6 is 6 and then 1 is added. The comma is an operator that
just returns the value on the right side. But now try entering the same expression without
the brackets.

1+4,6

Example 1.3.4: Operator precedence

Now the return value is 6. That is because the comma operator has a lower precedence
than the plus sign, so 1+4,6 is similar to writing (1+4),6. The behaviour of the comma
operator is the same like calculating multiplications before additions, like 2*3+5 is the
same as (2*3)+5 and is different from 2*(3+5). The comma operator in fact has a
lower precedence than all other operators, so it works just as expected like a ’command
separator’.

The DME Calculator language also contains basic mathematical functions. The result
of Example 1.3.5

cos(0)

Example 1.3.5: Using functions

The DME Calculator Manual 5

CHAPTER 1. USING THE DME CALCULATOR

is 1 and the the result of

sin(pi()/2)

Example 1.3.6: Using functions

is also 1. Functions are always written with two brackets containing the function
arguments. If a function has no arguments like the pi() function that just returns π , the
brackets must be also written to distinguish the function from a variable.

When the cursor is placed on a built-in function and the F1 key is
pressed, the online help display jumps to the description of that func-
tion.

i

Using variables is as easy as using real numbers, so

a=3, 4*a

Example 1.3.7: Using variables

the example 1.3.6 returns 12, as first the variable ’a’ gets the value 3 and then it is
multiplied by 4. Variable names are case dependent, so Example 1.3.8

Hugo=1, hugo=2, Hugo

Example 1.3.8: Variable names are case dependend

returns 1 as the variable Hugo is a different variable than hugo.
To make it a little bit more complicated, look at the expression in Example 1.3.9

b=(a=6)*2,b+a

Example 1.3.9: = is an operator

The equal sign is also an operator that returns the value it assigns, so the expression
a=6 not only assigns 6 to a but also has the return value 6. So in Example 1.3.9 b is
assigned 12, while a is assigned 6, so the result is 18.

DME Calculator can work not only with numbers but also with strings. Strings are
enclosed in single quotes.

6 The DME Calculator Manual

CHAPTER 1. USING THE DME CALCULATOR

’Hello’

Example 1.3.10: Strings

The example above just returns ’Hello’. One can also perform operations with a string,
so

’Hello’+’ you’

Example 1.3.11: String concatenation

returns ’Hello you’. Strings can also be assigned to variables, so

a=’Hello’,
b=’ you’,
a+b

Example 1.3.12: Variables and strings

Example 1.3.12 does the same as Example 1.3.11 and returns ’Hello you’.
Sometimes it is required to put a number behind a string. Try Example 1.3.13,

a=5*2,
’The result is ’+string(a)+’.’

Example 1.3.13: Variables and strings

which returns ’The result is 10.’. The string() function is necessary to force a
to be a string so that the + operator performs a string concatenation and not a numerical
addition. Without the string() function, the example would just return the number
10, as the string ’The result is ’ and ’.’ cannot be converted into a number and thus is
converted to 0. When converting a string into a number the conversion is done from left
to right and the conversion is stopped when the first non-numerical character is found.
Example 1.3.14

’123abc’*2

Example 1.3.14: Variables and strings

returns 246, because the first digits could be converted into a numerical value.

The DME Calculator Manual 7

CHAPTER 1. USING THE DME CALCULATOR

1.3.2 Controlling the program flow
We start with conditional evaluation and using the if(a;b;c) function. This is a func-
tion with 3 arguments. Multiple function arguments are separated with a semicolon in the
DME Calculator. Example 1.3.15

b=5,
if(b<3;a=2;a=3),
a

Example 1.3.15: Conditional evaluation

returns 3, because the if() function first evaluates the first argument. If this is true, it
evaluates the second argument, otherwise it evaluates the third argument. In the example,
b is not less than 3, so the third argument is evaluated and a is assigned 3.

The if() also returns the value of the expression it evaluates, so

if(2<3;5;6)

Example 1.3.16: Conditional evaluation

the example above simply returns 5, as the first expression is true. So example 1.3.15
could also be written in the following way:

b=5,
a=if(b<3;2;3),
a

Example 1.3.17: Conditional evaluation

The third argument must always be present. If it is not used one can put a zero there:

b=5,
if(b>10;b=10;0),
b

Example 1.3.18: Conditional evaluation

In the example above b is set to 10 if it is greater than 10. Otherwise b is not changed.

8 The DME Calculator Manual

CHAPTER 1. USING THE DME CALCULATOR

The first expression in the i f function is evaluated to check whether it is true or false.
In the DME Calculator language, true and false are also represented as numbers, where 0
means false and any other value means true. Just evaluating Example 1.3.19

2<3

Example 1.3.19: Conditions

returns 1 and 3<2 would return 0. Also if(1;3;4) returns 3 and if(0;3;4)
returns 4. There are also an and (&) and an or (|) operator, as well as a not function. So
Example 1.3.20

not(2<3 & 5>2)

Example 1.3.20: Conditions

returns zero.
Another function that is based on a condition is the while(cond;expr) function.

This function has two arguments. It evaluates the second argument until as long as the
first argument is true.

a=1,
i=1,
n=4,
while(i<=n;
a *= i, i += 1),

a

Example 1.3.21: The while() function

Example 1.3.21 returns the factorial of n. n is set to 4 so the return value is 24. Here a
is multiplied by i and then i is incremented by one. The loop is stopped when n becomes
5.

The same can also be done with the for(init;cond;inc;expr) function. This
function has four arguments and is also used for creating a loop. It has two more ar-
guments for initializing and counting up a counter variable. Using the for() function,
Example 1.3.21 can be rewritten as

The DME Calculator Manual 9

CHAPTER 1. USING THE DME CALCULATOR

n=4,
for(a=1,i=1; i<=n; i+=1;

a*=i),
a

Example 1.3.22: The for() function

Using the for() function makes it easy to create a loop evaluating an expression with
a counter variable i counting up from a to b, which is done by for(i=a;i<=b;i+=1;expr).

1.3.3 Defining own functions
Using the special define() function it is very simple to define own functions. The first
parameter of the define() function is the new function name including parameters.
The second parameter is the expression that should be evaluated when this function is
called. As with all expressions in the DME Calculator, this expression can be very big
and complex.

define(f(x); 2*x),
f(5)

Example 1.3.23: Defining own functions

In the example above a function f(x) is defined and then f(5) is evaluated which
returns 10. The newly defined function is available at once, even in the expression defining
the function (see later example 1.3.25) If the function is defined in the global panel, it can
be used in all other panels.

All normal variables, i.e. variables not starting with a $-sign (see section 3.3.3 on
page 25), that are used and defined within a function definition are local variables. Vari-
ables inside the function definition have nothing to do with variables outside the function
definition:

define(f(x);2*x),
x=3,
f(4)+x

Example 1.3.24: Variables within function definitions are local

In the example a variable x is used inside the function definition as well as in the main
expression. The return value of this example is 11 and this shows that the variable x out-

10 The DME Calculator Manual

CHAPTER 1. USING THE DME CALCULATOR

side the function definition is a different variable than the x used inside the define().
Even after the evaluation of f(4) x still has the value 3.

In fact the DME Calculator implements a real ’variable-stack’ which distinguishes
variables even if a function is called within its own defining expression. This allows
programming of recursive expressions:

define(factorial(n);
if(n<=1; 1; n * factorial(n-1))

),
factorial(5)

Example 1.3.25: Recursive expressions

Here the function factorial(n) calculates the factorial of the integer n. This
is done with a recursive expression: When the function is called with a parameter > 1
the function calls itself again with the parameter decremented by 1. The result of this
is multiplied by the original parameter. When the parameter is <= 1, the function simply
returns 1. This ’stop-condition’ is very important, otherwise this would result in an infinite
recursion. The result of factorial(5) is 5! = 5 ·4 ·3 ·2 ·1 = 120.

Arrays are passed ’by reference’: When the contents of an array parameter within a
user-defined function is changed, the array in the calling expression is also changed. The
next example uses this feature:

define(multi(a[];v);
foreach(i;a[];a[i] *= v)

),
for (i=0;i<10;i+=1;
anarray[i] = i

),
multi(anarray[];20),
foreach(i;anarray[];
println(anarray[i])

)

Example 1.3.26: Arrays as parameters

Here a function multi() is defined, that takes an array as first parameter and multi-
plies all elements in the array by the second parameter. In the example an array is created
and then multiplied by 20.

The DME Calculator Manual 11

CHAPTER 1. USING THE DME CALCULATOR

Figure 1.2: A text output example.

1.3.4 Text output window

Sometimes it is necessary to view intermediate results or generate messages during the
calculation. For this purpose the DME Calculator has two functions called print() and
println(). These functions have a single scalar variable as parameter and write the
contents of the variable to a text output window. The following example generates text
output:

for(i=0; i<5; i+=1;
println(’Line ’+string(i))
)

Example 1.3.27: Writing text to the text output window

The output of this example is shown in Fig. 1.2. The difference between the functions
println() and print() is that println() automatically appends a linefeed. If
the print() function would have been used in the example the text output would look
like ’Line 0Line 1Line2...’.

By means of the buttons of the text output window its contents can be stored into a
file, printed, or copied to the clipboard.

12 The DME Calculator Manual

CHAPTER 1. USING THE DME CALCULATOR

Figure 1.3: The two dimensional graphic window

1.3.5 Two dimensional plots

The DME Calculator provides multiple functions for generating and handling two dimen-
sional plots. All function names start with ’plot...’ so they can easily be identified. The
single line

plot(0;0;x;sin(x);0;2*pi();200)

Example 1.3.28: Simple two dimensional plot

generates the output shown in Fig. 1.3. The function
plot(tabno;curveno;var;func;start;stop;count) evaluates func and gen-
erates count data points by setting var to values in the interval [start,stop]. The two di-
mensional output window can contain multiple tabs, and on each tab multiple curves can
be plotted into the same diagram.

Several functions are available for specifying axis labels, tab label, curve colour and
thickness, as well as selecting whether data points should be drawn connected or as a line.

Interactive zooming is supported by dragging a rectangle using the left mouse button.
To go back to the automatically scaled view, right-click somewhere on the graphic win-
dow. Using the buttons on the top of the window, the current diagram can be copied to
the clipboard, saved as ASCII data, or printed.

The DME Calculator Manual 13

CHAPTER 1. USING THE DME CALCULATOR

To plot point data from arrays use the plotxy() function!
i

1.3.6 Further functions
A complete list of functions is contained in the online help. Especially to mention are
the functions fit() for performing nonlinear least squares fit by a modified levenberg-
marquardt algorithm and fft() and invfft() for performing fast fourier transform calcula-
tions. The DME Calculator is also capable of performing file io, starting external pro-
grams, doing serial communication and communication via GPIB (IEEE-488).

14 The DME Calculator Manual

Chapter 2

Creating and Using DME Calculator
GUIs

2.1 Overview

Starting from version 3, the DME Calculator supports creating user defined graphical
user interfaces (GUIs). One can create buttons, edit fields, scrollbars etc. to provide input
data for DME Calculator programs as well as controlling program behaviour or even fully
interactive programs. An example of such a control window is given in Fig. 2.1 showing
all basic controls. DME Calculator supports the following types of controls:

Button Control The button control creates a button which can be pressed and held down.
The button’s text can be updated by the DME Calculator program.

Label Control The label control’s main purpose is to display descriptive text. Even
though labels commonly display always the same text, the text of a label can also
be changed by the DME Calculator program.

Display Control The display control is used to display text generated by the user pro-
gram. Additionaly to the label control, the font size can be changed to allow dis-
playing of large numbers or text.

CheckBox Control The checkbox consists of a label with a small square in front where
a checkmark can be placed or removed. It is commonly used to enable / disable
certain functionality. The text of the label as well as the check mark can be modified
or read out by the DME Calculator program.

Edit Control The edit control consists of a text input field and an ok button for accepting
the input. This control allows the user to input text or numerical values.

15

CHAPTER 2. CREATING AND USING DME CALCULATOR GUIS

Button Control

CheckBox Control

Display Control

Edit Control

Label Controls

ScrollBar Control

Figure 2.1: A GUI window with some sample controls.

ScrollBar Control The scroll bar control lets the user manipulate numerical values. This
is especially useful if some parameters have a certain predefined range of allowed
values.

The GUIs are commonly created with DME Calculator’s builtin GUI editor and then
loaded in a DME Calculator program by the loadgui() function. This chapter describes
how to create GUIs and use them by giving some examples.

2.2 Creating GUIs
To open the editor, choose Create / Edit GUI... from the file menu. The program asks
for a file name. If a non existing file name is given, a new file is created, otherwise an
existing file is opened an can be modified.

After the file name has been specified, the GUI editor window is opened (see Fig.
2.2). Controls are now added by pressing one of the buttons in the upper left corner and
clicking somewhere in the workspace to place the control.

While editing, the controls are indicated as frames. Each control gets its own ID
number which is later used to address the control from a DME Calculator program. By
pressing the test button, the final appearance of GUI window can be investigated.

By double clicking inside a frame, the property dialog of the corresponding control is
displayed. Here the appearance and other parameters can be set, depending on the type of
control.

A single control can be selected by a single click inside a frame. To select more
than one control, one can draw a selection rectangle by pressing and holding the left
mouse button in a free area of the workspace and dragging the mouse. All controls in the

16 The DME Calculator Manual

CHAPTER 2. CREATING AND USING DME CALCULATOR GUIS

Workspace

Buttons for adding new controls

Figure 2.2: The GUI editor window.

rectangle become selected. The selected controls can either be duplicated or deleted by
pressing the corresponding button.

The GUI file is saved to disk either by pressing the Save button or closing the editor
window. The file format of the GUI file is quite simple: It is a comma separated text file
(CSV) where each line describe a single control. Here comes a description of the single
elements:

1. Control type id:
0 = Label, 1 = Display, 2 = Scrollbar, 3 = Edit, 4 = Button, 5 = Checkbox

2. Left coordinate

3. Top coordinate

4. Right coordinate

5. Bottom coordinate

6. Control Id

7. A list of further parameters, depending on the control type

The DME Calculator Manual 17

CHAPTER 2. CREATING AND USING DME CALCULATOR GUIS

Figure 2.3: Sample GUI window

2.3 Using GUIs

For learning how to use GUIs we start with a small example. First, create a small GUI
window named tst.gui. It should contain a scrollbar control with id 1 and a display control
with id 2, as shown in Fig. 2.3. Close the editor window and from the Edit menu select
Insert GUI code... and choose the previously generated editor file tst.gui. The following
code is then created:

loadgui(0;’...\tst.gui’),
while(waitguievent(0);
println(’GUI Event...’)
)

Example 2.3.1: Generated code example

This small piece of code displays the GUI and then waits for a user event. User events
are generated for example by pressing a button, moving a scroll bar or editing text. In
the code above, on each event the program displays a line „GUI Event...”. To now do
something else, we modify the code as follows:

18 The DME Calculator Manual

CHAPTER 2. CREATING AND USING DME CALCULATOR GUIS

loadgui(0;’...\tst.gui’),
setproperty(0;2;0;’’),
while(waitguievent(0);
a = getproperty(0;1;0),
setproperty(0;2;0;a)

)

Example 2.3.2: Reading and setting properties

The code above now obtains the current value of the scroll bar and displays it in the
display control.

2.3.1 Communication with GUI controls

For communication with the GUI controls, the functions getproperty() and setproperty()
are used. There can be more than one GUI window loaded, the first parameter for both
functions getproperty() and setproperty() is the window number. In the code above, we
have specified to load the gui with the loadgui() function as window 0, so the first pa-
rameter in both functions tells to use the controls on window 0. The second parameter
for both functions is the control id, which is displayed in the GUI editor when the test
mode is not active. The third parameter for both functions is the property id. Each control
type has different properties, for example the first property with id 0 of a scroll bar is its
current value. The properties with id 1 and 2 are the minimum and maximum values of
the scroll bar, corresponding to the values when the slider is moved fully up or down. The
properties 3 and 4 are the page size and line size, corresponding to how much the scroll
bar is moved when the user presses the page up and down keys or the up and down arrows.

For a full list of property ids for each control go to the online help of the functions
setproperty().

The code below now uses the parameter from the scroll bar to plot a curve, where the
oscillation period depends on the scroll bar value.

The DME Calculator Manual 19

CHAPTER 2. CREATING AND USING DME CALCULATOR GUIS

loadgui(0;’...\tst.gui’),
setproperty(0;2;0;’’),
while(waitguievent(0);
a = getproperty(0;1;0),
setproperty(0;2;0;a),
plot(0;0;x;
sin(x*(1+a/100))*exp(-x/(2*pi()));
0;5*pi();200)
)

Example 2.3.3: Using GUI parameters

As a last step we will now add a button to reset the scrollbar to the middle position.
We start with opening the GUI editor again and selecting the file tst.gui. Now we add a
button, which will become control number 3. By double clicking on the button control
frame, change the button text from „Button” to „Reset”.

Close the GUI editor again and modify the code as follows:

loadgui(0;’...\tst.gui’),
setproperty(0;2;0;’’),
while(waitguievent(0);
if(haschanged(0;3);
setproperty(0;1;0;50);
0),
a = getproperty(0;1;0),
setproperty(0;2;0;a),
plot(0;0;x;
sin(x*(1+a/100))*exp(-x/(2*pi()));
0;5*pi();200)

)

Example 2.3.4: Using GUI parameters

We have basically added 3 lines after the while: The haschanged() function checks,
whether a control generated an event since the function haschanged() for the same control
was called the last time. In this example this function is used to find out whether the button
3 has been pressed. If yes, the current value of the scroll bar is set to 50.

20 The DME Calculator Manual

Chapter 3

Language reference

This chapter describes the language used in the DME Calculator. This language can
perform calculation tasks, perform iterations and loops, and execute functions.

3.1 Syntax

The DME Calculator’s language is an expression based language, where expression means
something that evaluates into a value. Expression based means that the whole program is
an expression which is commonly made from simpler expressions also containing simpler
expressions, etc. The simplest expression is just a number, like 42. Another type of sim-
ple expression is a text string, like ’hello’. Text strings are enclosed in single quotes.
The third type of simple expression is a variable name, like a or hugo, which itself holds
either a number or a text string.

A more complex expression includes an operator, e.g. a plus (+) sign. 1+1 is also
an expression, it evaluates into the value 2. Another example is a+b, which evaluates in
to the contents of the variables a and b added together. Also possible is ’hel’+’lo’,
which evaluates into the text string ’hello’. The + operator actually concatenates two
expressions, it is also called an infix-operator. This is the only kind of operators the DME
Calculator understands. The behaviour of the operator can be different, depending on
whether it is used with in conjunction with strings or numbers, as shown on the + operator.
Each infix-operator has an implicit precedence value. If one imagines the expression
1+4*5, the multiplication must take place before the addition is executed, therefore the *
operator has a higher precedence than the + operator. To change this default behaviour, the
DME Calculator language knows round brackets (); with an expression like (1+4)*5
one can force the evaluation of the addition to take place before the multiplication.

Another kind of expression is a function, like cos(0). This example evaluates into
the value 1. A function has one or more arguments, which are themselves expressions.
It performs an action on its arguments and returns a string or a number. For example the

21

CHAPTER 3. LANGUAGE REFERENCE

modulo function mod has two arguments. It calculates the remainder of the division of the
left argument by the right argument. In the DME Calculator language, multiple arguments
are separated by the semicolon (;). Therefore the expression mod(8;3) evaluates into
2.

This is all we need to make a programming language. Everything else fits into this
basic structure. Since a DME Calculator program is only an expression, all examples
shown in this chapter can be directly entered into the program window. When the start
button is pressed, the expression is evaluated and the result is displayed in the status line.

You can try this directly: Enter the expression 2*3 in the program win-
dow and press the start button or F2. The result (6) is displayed in the
status bar.

i

3.2 Operators
The DME Calculator knows four different kinds of operators, which are mathematical
operators, assignment operators, logical (also called ’boolean’) operators and the special
comma (,) operator. Mathematical operators are *, +, /, and -which are self explanatory
and ^ which means exponentiate. The + operator has two different functions as when
used together with numerical operands it performs an addition and with string operands
it performs a concatenation. The other mathematical operators work only with numerical
operands1.

The second class of operators are assignment operators. The simplest assignment
operator is the = operator. It is used to assign a value to a variable, for example a=5
or c=’hello’. As a=5 is also an expression, it must have a return value. The result
of such an expression is the value on the right side, which means 5 in this case. So the
expression (c=2)+5 is valid and has the return value 7 and at the same time the variable
c gets 2. The assignment operator has a lower priority than a mathematical operator and
therefore c=2+5 is the same as c=(2+5) which both have the return value 7 which
is also assigned to the variable c. There are also assignment operators that perform an
assignment and a mathematical operation. These are +=, -=, /= and *=. They first
perform the mathematical operation and then assign the result to the variable on the left
side. So if a has the value 2 then after a+=5, a has the value 7. The return value of these
type of operators is the result of the mathematical operation, so the value 7 in the example
above. The += operator also works with strings, so if s has the value ’hello’ then after
s+=’ you’, s has the value ’hello you’.

The third class of operators consists of the and operator &, the or operator |, the equal
operator ==, the not equal operator != as well as the compare operators >, <, >=, and

1If these operators are nevertheless used with string operands the strings are first translated into a nu-
merical value. So the expression ’5’-’2’ is the same as 5-2.

22 The DME Calculator Manual

CHAPTER 3. LANGUAGE REFERENCE

<=. These operators are used with numerical operands, where a zero means false and
everything else means true. When a condition is true, the operators return the value 1
and a zero otherwise. So the expression 1==2 evaluates to 0 and 6>2+3 evaluates to
1, whereas 1==2 & 6>2+3 evaluates to 0. These logical operators are mainly used
together with the if() or while() functions to control program flow2.

Now there is one last operator that does not fit in the other classes, the comma (,) op-
erator. This operator does nothing except return the value on the right side. This means,
the expression 2,3 evaluates to 3. This operator is commonly used for causing expres-
sions to be evaluated. For example a=2,b=3,c=55 assignes values to the variables a,
b, and c. The return value of this expression is 55, as this is the right most expression.
As the comma operator has the lowest precedence, one does not need to write the above
example (a=2),(b=3),(c=55), which is actually the same but requires more typing.

println(’Hello’),
println(’You’)

Example 3.2.1: The comma operator can be regarded as a simple command delimiter.

One can also regard this operator as a ’command delimiter’, simply executing expressions
sequentially, as shown in Example 3.2.1.

3.3 Variables

Unlike other programming languages, in the DME Calculator language variables do not
need to be declared. If a value is assigned to a variable and the variable did not exist
before, it is automatically created. For example the expression a=2 creates the variable a
(if it did not exist before) and sets it to the value 2. If it is attempted to access a variable
that does not exist, an error message is generated and the execution is stopped. For ex-
ample when the expression a=2+b is executed and b does not exist, an error message is
generated. The DME Calculator language knows two different kinds of variables: Scalar
and array variables. A scalar variable can hold a numerical value3 or a string.

An array can hold a theoretically unlimited number of numerical values, but no strings.
An index is used to reference a specific value in the array. The index is given in square
brackets. In the expression a[5]=3 the fifth value of the array a is set to 5.

2There is no not operator, as the DME Calculator only knows infix operators with two arguments. For
this purpose please use the not() function.

3Numerical values in the DME Calculator are always floating point numbers having double precision.
They can hold values in the range −1.7 · 10308 . . .1.7 · 10308. The smallest value not unequal to zero is
1.7 ·10−308.

The DME Calculator Manual 23

CHAPTER 3. LANGUAGE REFERENCE

Variable names in the DME Calculator are case sensitive, so the variable a is different
from the variable A. Arrays are commonly used for processing multiple values in a loop

a[0]=3,
a[1]=5,
a[2]=2,
sum=0,
for(i=0; i<length(a[]); i+=1;

sum += a[i]),
sum2=0,
foreach(i; a[]; sum2 += a[i])

Example 3.3.1: In this example the array a is initialized with 3 values. Then these values are
summed in a for-loop and in a for-each-loop. After execution both sum and sum2 have the value
10.

like shown in Example 3.3.1. The first value in an array always has the index 0. The
length of the array is determined by the highest index that has been assigned. In Example
3.3.1 the highest index that has been assigned is 2, therefore the array has the length 3,
i.e. it contains 3 values.

a[99]=5,
a[27]

Example 3.3.2: This program returns zero, as a[27] is automatically initialized with zero.

When assigning a value to an index which is higher than the original length of the
array, the array length is automatically increased and all values between the old length
of the array and the newly assigned value are initialized with zeros. If the program in
example 3.3.2 is executed, the array a immediately has a length of 100 after the first
assignment, and all values below 99 are initialized with zeros. So the return value of the
whole program is zero, as a[27] is zero.

3.3.1 Global Variables
There also exists a special kind of variables, called ’global variables’. Unlike other vari-
ables, these are valid not only in the expression where they are defined but also within user
defined functions. They also can be initialized in the global panel and are then accessable
within a normal calculator panel. Global variables are defined by a leading $ sign in front
of their names.

24 The DME Calculator Manual

CHAPTER 3. LANGUAGE REFERENCE

$myglobal = 5,
define(f(x);x * $myglobal),
f(3)

Example 3.3.3: Global variables

In this example a global variable $myglobal is defined. This is then used within a
user defined function. The example returns the value 15.

3.4 Comments

a = 2, /* this is a comment */
b = 3, /* this is also a comment
that extends over two lines */
c = /* another comment */ ’hello’
/* the last line assigns ’hello’ to c */

Example 3.4.1: Using comments

It is often necessary to write some descriptive text into the program. To mark the be-
ginning of descriptive text, use /*. Then the parser ignores everything until a */ is
encountered. See Example 3.4.1.

3.5 Functions
This section describes some basic functions contained in the DME Calculator language.
For the description of all other functions have a look at the online help of the DME Cal-
culator. Some functions require a whole array as an argument, like the arraymax()
function. To pass a whole array as an argument, use the array name with the square brack-
ets and without an index, so the expression arraymax(a[]) returns the biggest value
in the array. In the DME Calculator language function names are case insensitive.

3.5.1 Program flow functions

The following functions are used for controlling the program flow, i.e. for creating loops
and conditional evaluation. These functions also have a return value which is often not
used.

The DME Calculator Manual 25

CHAPTER 3. LANGUAGE REFERENCE

for(a;b;c;d)

This function is commonly used to create a loop that is based on a counter variable.
When this function is evaluated, first the expression a is evaluated. Commonly here a
counter variable is initialized. The second expression b is a condition. If this returns true
(1), expression d is evaluated, which is the ”working function” of the loop. After this,
expression c is evaluated, which is commonly used for incrementing a counter variable.
Then the procedure repeats with evaluating expression b again. The return value of the
for() is the result of the last evaluation of expression d or 0 if expression d is has not
been evaluated.

for(i=0;i<10;i+=1;
println(i)
)

Example 3.5.1: The examples prints the numbers 0 to 9 to the text output window.

foreach(i;a[];c)

This function is a specialized for function for processing arrays. i must be a variable,
which is used as an array iterator. i counts from zero to the length of a[]-1 while for
every count expression c is evaluated. See Example 3.3.1 on page 24.

if(a;b;c)

This function first evaluates the expression a. If this is true (meaning it evaluates to 1),
expression b is evaluated, otherwise expression c is evaluated. The return value of the
if is the return value of either expression b or expression c, depending on which one has
been evaluated. Example 3.5.2 shows two usage examples, one uses the return value of

/* first possibility */
r = if(a;’yes’;’no’),
/* second possibility */
if(a;r=’yes’;r=’no’)

Example 3.5.2: Two different possibilities using the if() function.

the if function and the other sets a variable inside the if.

26 The DME Calculator Manual

CHAPTER 3. LANGUAGE REFERENCE

sleep(x)

Waits for x milliseconds, so sleep(1000) holds progam execution for 1 second. The
return value is always 1.

while(a;b)

This function executes expression b as long as expression a evaluates to true (1). a is eval-
uated before b. Example 3.5.3 shows an infinite loop permanently writing ’hello’+linefeed

s=’baud=9600 parity=N stop=1 data=8’,
commopen(0;s;3000),
while(1;
commwrite(0;’hello’+chr(13))

)

Example 3.5.3: Here the while() is used to create an infinite loop.

to the 1st serial port.

3.5.2 User interface functions

The following functions are used together with DME Calculator’s graphical user inter-
faces.

getproperty(panel;control;id)

This function returns the value of a control property. The control is addressed by a panel
number and a control number. The value of the property determined by id is returned.
The control number is the number indicated in the gui editor. The panel number is the
number which has been passed to the loadgui() function when the GUI has been loaded.

It depends on the control type, which property ids are valid. Here comes a list of all
controls with their properties:

The DME Calculator Manual 27

CHAPTER 3. LANGUAGE REFERENCE

Control Type Property ID Description
Label 0 Caption

1 Alignment: 0 = left, 1 = middle, 3 = right
Display 0 Caption

1 Alignment: 0 = left, 1 = middle, 3 = right
ScrollBar 0 Current Value

1 Minimum
2 Maximum
3 Page Size
4 Line Size

Edit Object 0 Caption
1 Alignment: 0 = left, 1 = middle, 3 = right

Button 0 Caption
1 Currently pressed (0 = not pressed)

CheckBox 0 Caption
1 Checked or unchecked (0 = unchecked)

haschanged(panel;control)

This function returns a value unequal to 0 when a control has generated an event since the
last time this function has been called for the same control. The control is addressed by
a panel number panel and the control number control. In example 3.5.4, controls 1 and

loadgui(0;’...\someexample.gui’),
while(waitguievent(0);
if(haschanged(0;1);
println(’Button 1 has been pressed’)
0),
if(haschanged(0;3);
println(’Button 3 has been pressed’)
0)
)

Example 3.5.4: An example for haschanged

3 are checked whether there has been an event generated from these and a corresponding
text is written to the display.

28 The DME Calculator Manual

CHAPTER 3. LANGUAGE REFERENCE

loadgui(panel;filename)

The function loadgui loads the GUI file filename as panel number panel and displays it.
There can be more than one GUI loaded at the same time, so that all GUI functions need
the panel number as a first parameter to address the right panel. The loadgui function is
the first function to use before any other of the GUI functions.

panelname(panel;txt)

This sets the header text for a panel for the case that more than one GUI file is loaded at
the same time. If only one GUI file is loaded, no header text is displayed.

setproperty(panel;control;id;value)

This sets the property id of control control on panel panel to value. For a list of possible
property IDs see function getproperty on page 27.

waitguievent(timeout)

This stops program execution until the user generates a user interface event on a panel.
Events are created for example by pressing a button, moving a scroll bar or changing the
text in an edit control. If timeout is not zero, this function returns as well when timeout
milliseconds have elapsed without the user generating an event.

The function returns 0 when the timeout was reached and a value unequal to 0 when
the user caused an event. If the function returns 0, for example haschanged() can be used
for checking which control generated the event.

The DME Calculator Manual 29

	Using the DME Calculator
	Introduction
	Getting started
	Example programs
	Understanding basics
	Controlling the program flow
	Defining own functions
	Text output window
	Two dimensional plots
	Further functions

	Creating and Using DME Calculator GUIs
	Overview
	Creating GUIs
	Using GUIs
	Communication with GUI controls

	Language reference
	Syntax
	Operators
	Variables
	Global Variables

	Comments
	Functions
	Program flow functions
	User interface functions

